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An exactly solvable class of discrete Schrodinger equations 
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Abstract A class of potentials adnutting analytic solution of the discrete Schrljdinger equation 
in terms of q-hypergeometric functions is considered. In particular. it includes the exponential 
and Hulthdn potentials as well as the Mwiand model. 

Exactly solvable models related to discrete Schrodinger operator on 12(Z) 

( H W x )  = W ( x  + 1) + * ( x  - 1) + V ( X ) r U ( X )  (1) 

are of much interest in solid state physics and statistical physics (see reviews [1,2] and 
references therein). The short list of such models known up to now consists of the linear 
[3], quadratic [4] and Coulomb [5,6] potentials plus the so-called Maryland model [7,81 
with an almost periodic potential 

V ( X )  = Atan(Zax +e) .  (2) 

In this paper we present a new class of potentials for which the discrete Schradingtx equation 
admits explicit solution: 

V(X)  = w ( q X )  (3) 

where q E C is a parameter and w ( z )  is  of the form 

In particular, this class includes the Maryland model (2) that corresponds to the following 
choice of parameters: 

(5) b = ihe-z'8 c = e-2i8 
L 

a = - i l  = 

as well as two other interesting examples: exponential potential 

V ( x )  = Ae-"lxl 

q = e-= a = c = O  b = A  
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and the Hulthin potential 

We show that the eigenfunctions of operator (1) with such a potential are expressed in terms 
of the q-hypergeometric function. To this end, let us work with the new variable z = q" in 
terms of which the discrete Schrodinger equation with potential (3) becomes a q-difference 
equation 

We look for its solution in the form 

Substituting this into (8) and equating powers of z reduces the three-term recurrence equation 
(8) to a two-term recurrence relation for the coefficients of the ansatz (9) 

( q n + O  + q-"-" - a - E )  = (b  - c[q' - '+O + q-n+'-o - E]) fn - l  (10) 

where U solves the equation 

q" + q - O  = a f E .  

Two solutions to this equation (+=U) fix two independent solutions to equation (8). 
By making use of the identity 

q" + q-" - A q-"(1 - q"+z)(l - qy-r) 

where 

qz+q-' = A  

equation (10) can be solved in terms of the q-shifted factorials 

Namely, if the parameter c of the potential (4) is zero, the solution to (10) is 

For c # 0 one gets 
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where U is defined by (1 1) and T solves 

By making use of these expressions series (9) can be converted into q-hypergeomenic 
function ,ps [9]: 

(i) c = 0 

Y(x) = q f l x  1p1(0; q2? q: -bqZ*+') (12) 

(ii) c # 0 

Y ( w )  = q,Jx *$Dl (qo+'q--': q b + ' ;  q :  -cq"+'). (13) 

These formulae yield explicit expressions for the solutions to the discrete Schrodinger 
equation with potential (3). Note that equation (12) can be rewritten in terms of the Hahn- 
Exton qBessel function J,(z;  4): 

Y(x) = J%(Aq;4'x+"'*;  q )  ( c  = 0).  (14) 

We omit constant normalization factors in equations (12H14). 
Let us now turn to particular examples. Consider, for instance, the even eigenstates 

(Y ( x )  = W(--x)) of the operator (1) which are fixed by the boundary condition Y(0) = 0. 
Then in the case of the exponential potential (6) the corresponding eigenvalues E, are given 
by the transcendental equation 

where U is the positive root of equation (11) (to provide exponential decay of the 
eienfunctions as x + 00): 

For the Hulthkn potential (7) an analogous equation is solved explicitly by making use of 
Heine's q-analogue of Gauss' summation formula 

where q = e-#, o ( E )  is given by (16) and 

Expression (17) vanishes when 

that gives the quantization rule for the eigenvalues. 
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The scattering problem related to these two models is also solved exactly. The 
eigenhnctions of the continuous specirum E = 2 cosk (k E (0, K)) are linear combinations 
of the solutions (12) or (13) with different signs of u,u = kik/a .  In the limit x --f 00 

they are of the form 

Q ( x ,  k) - sin(kx + 6(k)) 

The phase shift is determined by condition at x = 0. For instance, for the even states one 
gets 

(i) the exponential potential: 

(ii) the Hulthh potential: 

where U = ik/a and 5 is defined by (18). Note that quantization rules (U), (19) and the 
expressions (20), (21) for the phase shifts are q-generalizations of the well known results 
for the continuous Schrodinger equation with exponential or Hulthen potentials [ 101. 

For the Maryland model (2), (5 )  formula (13) yields a simple representation of eigen- 
functions that seems to be previously unknown. Note that the arguments of the q-function 
on the right-hand side of equation (13) in this case are on the unit circle which is the 
boundary of the convergence domain of the corresponding basic hypergeometric series. In 
such a case the latter is to be understood as analytical continuation provided, for instance, 
by the q-analogue of Barnes' integral 191. 
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