

Home Search Collections Journals About Contact us My IOPscience

An exactly solvable class of discrete Schrodinger equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 215

(http://iopscience.iop.org/0305-4470/27/1/015)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:19

Please note that terms and conditions apply.

An exactly solvable class of discrete Schrödinger equations

Andrei A Kvitsinsky*

Institut des Sciences Nucléaires 53, Avenue des Martyrs, 38026 Grenoble Cedex, France

Received 29 April 1993

Abstract. A class of potentials admitting analytic solution of the discrete Schrödinger equation in terms of q-hypergeometric functions is considered. In particular, it includes the exponential and Hulthén potentials as well as the Maryland model.

Exactly solvable models related to discrete Schrödinger operator on $l^2(Z)$

$$(H\Psi)(x) = \Psi(x+1) + \Psi(x-1) + V(x)\Psi(x) \tag{1}$$

are of much interest in solid state physics and statistical physics (see reviews [1,2] and references therein). The short list of such models known up to now consists of the linear [3], quadratic [4] and Coulomb [5,6] potentials plus the so-called Maryland model [7,8] with an almost periodic potential

$$V(x) = \lambda \tan(\pi \alpha x + \theta). \tag{2}$$

In this paper we present a new class of potentials for which the discrete Schrödinger equation admits explicit solution:

$$V(x) = \omega(a^x) \tag{3}$$

where $q \in \mathbb{C}$ is a parameter and $\omega(z)$ is of the form

$$\omega(z) = \frac{a+bz}{1+cz}. (4)$$

In particular, this class includes the Maryland model (2) that corresponds to the following choice of parameters:

$$q = e^{-2\pi i \alpha}$$
 $a = -i\lambda$ $b = i\lambda e^{-2i\theta}$ $c = e^{-2i\theta}$ (5)

as well as two other interesting examples: exponential potential

$$V(x) = \lambda e^{-\alpha|x|}$$

$$q = e^{-\alpha} \qquad a = c = 0 \qquad b = \lambda$$
(6)

^{*} Permanent address: Department of Mathematical and Computational Physics, Institute for Physics, University of St Petersburg, 198904 St Petersburg, Russia.

and the Hulthén potential

$$V(x) = \lambda \frac{e^{-\alpha|x|}}{(1 - e^{-\alpha|x|})}$$

$$q = e^{-\alpha} \qquad a = 0 \qquad b = \lambda \qquad c = -1.$$
(7)

We show that the eigenfunctions of operator (1) with such a potential are expressed in terms of the q-hypergeometric function. To this end, let us work with the new variable $z = q^x$ in terms of which the discrete Schrödinger equation with potential (3) becomes a q-difference equation

$$\Psi(qz) + \Psi(z/q) + \left(\frac{a+bz}{1+cz} - E\right)\Psi(z) = 0. \tag{8}$$

We look for its solution in the form

$$\Psi(z) = \sum_{n=0}^{\infty} f_n z^{n+\sigma}.$$
 (9)

Substituting this into (8) and equating powers of z reduces the three-term recurrence equation (8) to a two-term recurrence relation for the coefficients of the ansatz (9)

$$(q^{n+\sigma} + q^{-n-\sigma} - a - E) = (b - c[q^{n-1+\sigma} + q^{-n+1-\sigma} - E])f_{n-1}$$
 (10)

where σ solves the equation

$$q^{\sigma} + q^{-\sigma} = a + E. \tag{11}$$

Two solutions to this equation $(\pm \sigma)$ fix two independent solutions to equation (8). By making use of the identity

$$q^{\nu} + q^{-\nu} - A = q^{-\nu}(1 - q^{\nu+\tau})(1 - q^{\nu-\tau})$$

where

$$q^{\tau} + q^{-\tau} = A$$

equation (10) can be solved in terms of the q-shifted factorials

$$(a;q)_n = \begin{cases} 1 & n = 0 \\ (1-a)(1-aq)\cdots(1-aq^{n-1}) & n = 1,2,\ldots \end{cases}$$

Namely, if the parameter c of the potential (4) is zero, the solution to (10) is

$$f_n = \frac{b^n q^{n\sigma} q^{n(n+1)/2}}{(q; q)_n (q^{2\sigma+1}; q)_n} f_0.$$

For $c \neq 0$ one gets

$$f_n = \frac{(-qc)^n (q^{\sigma+\tau}; q)_n (q^{\sigma-\tau}; q)_n}{(q; q)_n (q^{2\sigma+1}; q)_n} f_0$$

where σ is defined by (11) and τ solves

$$q^{\tau} + q^{-\tau} = E + \frac{b}{c}.$$

By making use of these expressions series (9) can be converted into q-hypergeometric function φ_s [9]:

(i) c = 0:

$$\Psi(x) = q^{\sigma x} {}_{1} \varphi_{1}(0; q^{2\sigma+1}; q; -bq^{x+\sigma+1})$$
(12)

(ii) $c \neq 0$:

$$\Psi(x) = q^{\sigma x} {}_{2} \varphi_{1}(q^{\sigma + \tau} q^{\sigma - \tau}; q^{2\sigma + 1}; q; -cq^{x + 1}). \tag{13}$$

These formulae yield explicit expressions for the solutions to the discrete Schrödinger equation with potential (3). Note that equation (12) can be rewritten in terms of the Hahn-Exton q-Bessel function $J_{\nu}(z;q)$:

$$\Psi(x) = J_{2\sigma}(\sqrt{-b}q^{(x+\sigma)/2}; q) \qquad (c = 0).$$
(14)

We omit constant normalization factors in equations (12)–(14).

Let us now turn to particular examples. Consider, for instance, the even eigenstates $(\Psi(x) = \Psi(-x))$ of the operator (1) which are fixed by the boundary condition $\Psi(0) = 0$. Then in the case of the exponential potential (6) the corresponding eigenvalues E_i are given by the transcendental equation

$$J_{2\sigma(E_i)}\left(\left[-\lambda e^{-\alpha\sigma(E_i)}\right]^{1/2}; e^{-\alpha}\right) = 0$$
(15)

where σ is the positive root of equation (11) (to provide exponential decay of the eienfunctions as $x \to \infty$):

$$\sigma(E) = \alpha^{-1} \ln \left(\frac{1}{2} \left[E + \sqrt{E^2 - 4} \right] \right). \tag{16}$$

For the Hulthén potential (7) an analogous equation is solved explicitly by making use of Heine's q-analogue of Gauss' summation formula

$$\Psi(0) = {}_{2}\varphi_{1}\left(q^{\sigma+\tau}, q^{\sigma-\tau}; q^{2\sigma+1}; q; q\right) = \frac{(q^{J\sigma-\tau+1}; q)_{\infty}(q^{\sigma+\tau+1}; q)_{\infty}}{(q^{2\sigma+1}; q)_{\infty}(q; q)_{\infty}}$$
(17)

where $q = e^{-\alpha}$, $\sigma(E)$ is given by (16) and

$$\tau(E) = \alpha^{-1} \ln \left(\frac{1}{2} \left[E - \lambda + \sqrt{(E - \lambda)^2 - 4} \right] \right). \tag{18}$$

Expression (17) vanishes when

$$\sigma(E) + \tau(E) = -n \qquad n = 1, 2, ...$$
 (19)

that gives the quantization rule for the eigenvalues.

The scattering problem related to these two models is also solved exactly. The eigenfunctions of the continuous spectrum $E = 2\cos k$ ($k \in (0, \pi)$) are linear combinations of the solutions (12) or (13) with different signs of σ , $\sigma = \pm ik/\alpha$. In the limit $x \to \infty$ they are of the form

$$\Psi(x, k) \sim \sin(kx + \delta(k)).$$

The phase shift is determined by condition at x = 0. For instance, for the even states one gets

(i) the exponential potential:

$$\delta(k) = \arg\{J_{2ik/\alpha}(\sqrt{-\lambda}e^{-ik/2}; e^{-\alpha})\}$$
 (20)

(ii) the Hulthén potential:

$$\delta(k) = \arg\left\{\frac{(q^{\sigma-\tau+1}; q)_{\infty}(q^{\sigma+\tau+1}; q)_{\infty}}{(q^{2\sigma+1}; q)_{\infty}}\right\}$$
(21)

where $\sigma = ik/\alpha$ and τ is defined by (18). Note that quantization rules (15), (19) and the expressions (20), (21) for the phase shifts are q-generalizations of the well known results for the continuous Schrödinger equation with exponential or Hulthén potentials [10].

For the Maryland model (2), (5) formula (13) yields a simple representation of eigenfunctions that seems to be previously unknown. Note that the arguments of the q-function on the right-hand side of equation (13) in this case are on the unit circle which is the boundary of the convergence domain of the corresponding basic hypergeometric series. In such a case the latter is to be understood as analytical continuation provided, for instance, by the q-analogue of Barnes' integral [9].

References

- [1] Mattis D C 1986 Rev. Mod. Phys. 58 361
- [2] Sokoloff J B 1985 Phys. Rev. 126 189
- [3] Gallinar J-P and Mattis D C 1985 J. Phys. A: Math. Gen. 18 2583
- [4] Chalbaud E, Gallinar J-P and Mata G 1986 J. Phys. A: Math. Gen. 19 L385
- [5] Gallinar J-P 1984 Phys. Lett. 103A 72
- [6] Kvitsinsky A A 1992 J. Phys. A: Math. Gen. 25 65
- [7] Grempel D R, Fishman S and Prange R E 1982 Phys. Rev. Lett. 49 833
- [8] Simon B 1985 Ann. Phys. 159 157
- [9] Gasper G and Rahman M 1990 Basic Hypergeometric Series (New York: Cambridge University Press)
- [10] Newton R G 1966 Scattering Theory of Waves and Particles (New York: McGraw-Hill)