An exactly solvable class of discrete Schrodinger equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27215
(http://iopscience.iop.org/0305-4470/27/1/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:19

Please note that terms and conditions apply.

An exactly solvable class of discrete Schrödinger equations

Andrei A Kvitsinsky*
Institut des Sciences Nucléaires 53, Avenue des Martyrs, 38026 Grenoble Cedex, France

Received 29 April 1993

Abstract

A class of potentials admutting analytic solution of the discrete Schrödinger equation in terms of q-hypergeometric functions is considered. In particular, it includes the exponential and Hulthén potentials as well as the Maryland model.

Exactly solvable models related to discrete Schrödinger operator on $l^{2}(Z)$

$$
\begin{equation*}
(H \Psi)(x)=\Psi(x+1)+\Psi(x-1)+V(x) \Psi(x) \tag{1}
\end{equation*}
$$

are of much interest in solid state physics and statistical physics (see reviews [1,2] and references therein). The short list of such models known up to now consists of the linear [3], quadratic [4] and Coulomb [5,6] potentials plus the so-called Maryland model [7, 8] with an almost periodic potential

$$
\begin{equation*}
V(x)=\lambda \tan (\pi \alpha x+\theta) \tag{2}
\end{equation*}
$$

In this paper we present a new class of potentials for which the discrete Schrödinger equation admits explicit solution:

$$
\begin{equation*}
V(x)=\omega\left(q^{x}\right) \tag{3}
\end{equation*}
$$

where $q \in \mathbb{C}$ is a parameter and $\omega(z)$ is of the form

$$
\begin{equation*}
\omega(z)=\frac{a+b z}{1+c z} \tag{4}
\end{equation*}
$$

In particular, this class includes the Maryland model (2) that corresponds to the following choice of parameters:

$$
\begin{equation*}
q=\mathrm{e}^{-2 \pi \mathrm{i} \alpha} \quad a=-\mathrm{i} \lambda \quad b=\mathrm{i} \lambda \mathrm{e}^{-2 i \theta} \quad c=\mathrm{e}^{-2 \mathrm{i} \theta} \tag{5}
\end{equation*}
$$

as well as two other interesting examples: exponential potential

$$
\begin{align*}
& V(x)=\lambda \mathrm{e}^{-\alpha|x|} \tag{6}\\
& q=\mathrm{e}^{-\alpha} \quad a=c=0 \quad b=\lambda
\end{align*}
$$

[^0]and the Hulthén potential
\[

$$
\begin{align*}
& V(x)=\lambda \frac{\mathrm{e}^{-\alpha|x|}}{\left(1-\mathrm{e}^{-\alpha|x|}\right)} \tag{7}\\
& q=\mathrm{e}^{-\alpha} \quad a=0 \quad b=\lambda \quad c=-1 .
\end{align*}
$$
\]

We show that the eigenfunctions of operator (1) with such a potential are expressed in terms of the q-hypergeometric function. To this end, let us work with the new variable $z=q^{x}$ in terms of which the discrete Schrödinger equation with potential (3) becomes a q-difference equation

$$
\begin{equation*}
\Psi(q z)+\Psi(z / q)+\left(\frac{a+b z}{1+c z}-E\right) \Psi(z)=0 . \tag{8}
\end{equation*}
$$

We look for its solution in the form

$$
\begin{equation*}
\Psi(z)=\sum_{n=0}^{\infty} f_{n} z^{n+\sigma} \tag{9}
\end{equation*}
$$

Substituting this into (8) and equating powers of z reduces the three-term recurrence equation (8) to a two-term recurrence relation for the coefficients of the ansatz (9)

$$
\begin{equation*}
\left(q^{n+\sigma}+q^{-n-\sigma}-a-E\right)=\left(b-c\left[q^{n-l+\sigma}+q^{-n+1-\sigma}-E\right]\right) f_{n-1} \tag{10}
\end{equation*}
$$

where σ solves the equation

$$
\begin{equation*}
q^{\sigma}+q^{-\sigma}=a+E \tag{11}
\end{equation*}
$$

Two solutions to this equation ($\pm \sigma$) fix two independent solutions to equation (8).
By making use of the identity

$$
q^{\nu}+q^{-\nu}-A=q^{-\nu}\left(1-q^{\nu+\tau}\right)\left(1-q^{\nu-\tau}\right)
$$

where

$$
q^{\tau}+q^{-\tau}=A
$$

equation (10) can be solved in terms of the q-shifted factorials

$$
(a ; q)_{n}= \begin{cases}1 & n=0 \\ (1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) & n=1,2, \ldots .\end{cases}
$$

Namely, if the parameter c of the potential (4) is zero, the solution to (10) is

$$
f_{n}=\frac{b^{n} q^{n \sigma} q^{n(n+1) / 2}}{(q ; q)_{n}\left(q^{2 \sigma+1} ; q\right)_{n}}=f_{0} .
$$

For $c \neq 0$ one gets

$$
f_{n}=\frac{(-q c)^{n}\left(q^{\sigma+\tau} ; q\right)_{n}\left(q^{\sigma-\tau} ; q\right)_{n}}{(q ; q)_{n}\left(q^{2 \sigma+1} ; q\right)_{n}} f_{0}
$$

where σ is defined by (11) and τ solves

$$
q^{\tau}+q^{-\tau}=E+\frac{b}{c}
$$

By making use of these expressions series (9) can be converted into q-hypergeometric function ${ }_{r} \varphi_{s}$ [9]:
(i) $c=0$:

$$
\begin{equation*}
\Psi(x)=q^{\sigma x}{ }_{1} \varphi_{1}\left(0 ; q^{2 \sigma+1} ; q ;-b q^{x+\sigma+1}\right) \tag{12}
\end{equation*}
$$

(ii) $c \neq 0$:

$$
\begin{equation*}
\Psi(x)=q^{\sigma x} \varphi_{1}\left(q^{\sigma+\tau} q^{\sigma-\tau} ; q^{2 \sigma+1} ; q ;-c q^{x+1}\right) \tag{13}
\end{equation*}
$$

These formulae yield explicit expressions for the solutions to the discrete Schrödinger equation with potential (3). Note that equation (12) can be rewritten in terms of the HahnExton q-Bessel function $J_{\nu}(z ; q)$:

$$
\begin{equation*}
\Psi(x)=J_{2 \sigma}\left(\sqrt{-b} q^{(x+\sigma) / 2} ; q\right) \quad(c=0) \tag{14}
\end{equation*}
$$

We omit constant normalization factors in equations (12)-(14).
Let us now turn to particular examples. Consider, for instance, the even eigenstates $(\Psi(x)=\Psi(-x))$ of the operator (1) which are fixed by the boundary condition $\Psi(0)=0$. Then in the case of the exponential potential (6) the corresponding eigenvalues E_{i} are given by the transcendental equation

$$
\begin{equation*}
J_{2 \sigma\left(E_{i}\right)}\left(\left[-\lambda \mathrm{e}^{-\alpha \sigma\left(E_{i}\right)}\right]^{1 / 2} ; \mathrm{e}^{-\alpha}\right)=0 \tag{15}
\end{equation*}
$$

where σ is the positive root of equation (11) (to provide exponential decay of the eienfunctions as $x \rightarrow \infty$):

$$
\begin{equation*}
\sigma(E)=\alpha^{-1} \ln \left(\frac{1}{2}\left[E+\sqrt{E^{2}-4}\right]\right) \tag{16}
\end{equation*}
$$

For the Hulthen potential (7) an analogous equation is solved explicitly by making use of Heine's q-analogue of Gauss' summation formula

$$
\begin{equation*}
\Psi(0)={ }_{2} \varphi_{1}\left(q^{\sigma+\tau}, q^{\sigma-\tau} ; q^{2 \sigma+1} ; q ; q\right)=\frac{\left(q^{J \sigma-\tau+1} ; q\right)_{\infty}\left(q^{\sigma+\tau+1} ; q\right)_{\infty}}{\left(q^{2 \sigma+1} ; q\right)_{\infty}(q ; q)_{\infty}} \tag{17}
\end{equation*}
$$

where $q=\mathrm{e}^{-\alpha}, \sigma(E)$ is given by (16) and

$$
\begin{equation*}
\tau(E)=\alpha^{-1} \ln \left(\frac{1}{2}\left[E-\lambda+\sqrt{(E-\lambda)^{2}-4}\right]\right) \tag{18}
\end{equation*}
$$

Expression (17) vanishes when

$$
\begin{equation*}
\sigma(E)+\tau(E)=-n \quad n=1,2, \ldots \tag{19}
\end{equation*}
$$

that gives the quantization rule for the eigenvalues.

The scattering problem related to these two models is also solved exactly. The eigenfunctions of the continuous spectrum $E=2 \cos k(k \in(0, \pi))$ are linear combinations of the solutions (12) or (13) with different signs of $\sigma, \sigma= \pm \mathrm{i} k / \alpha$. In the limit $x \rightarrow \infty$ they are of the form

$$
\Psi(x, k) \sim \sin (k x+\delta(k))
$$

The phase shift is determined by condition at $x=0$. For instance, for the even states one gets
(i) the exponential potential:

$$
\begin{equation*}
\delta(k)=\arg \left\{J_{2 \mathrm{i} k / \alpha}\left(\sqrt{-\lambda} \mathrm{e}^{-\mathrm{i} k / 2} ; \mathrm{e}^{-\alpha}\right)\right\} \tag{20}
\end{equation*}
$$

(ii) the Hulthen potential:

$$
\begin{equation*}
\delta(k)=\arg \left\{\frac{\left(q^{\sigma-r+1} ; q\right)_{\infty}\left(q^{\sigma+\tau+1} ; q\right)_{\infty}}{\left(q^{2 \sigma+1} ; q\right)_{\infty}}\right\} \tag{21}
\end{equation*}
$$

where $\sigma=\mathrm{i} k / \alpha$ and τ is defined by (18). Note that quantization rules (15), (19) and the expressions (20), (21) for the phase shifts are q-generalizations of the well known results for the continuous Schrödinger equation with exponential or Hulthén potentials [10].

For the Maryland model (2), (5) formula (13) yields a simple representation of eigenfunctions that seems to be previously unknown. Note that the arguments of the q-function on the right-hand side of equation (13) in this case are on the unit circle which is the boundary of the convergence domain of the corresponding basic hypergeometric series. In such a case the latter is to be understood as analytical continuation provided, for instance, by the q-analogue of Barnes' integral [9].

References

[1] Mattis D C 1986 Rev. Mod. Phys. 58361
[2] Sokoloff J B 1985 Phys. Rev. 126189
[3] Gallinar J-P and Mattis D C 1985 J. Phys. A: Math. Gen. 182583
[4] Chalbaud E, Gallinar J.P and Mata G 1986 J. Phys. A: Math. Gen. 19 L385
[5] Gallinar J-P 1984 Phys. Lett. 103A 72
[6] Kvitsinsky A A 1992 J. Phys. A: Math. Gen. 2565
[7] Grempel D R, Fishman S and Prange R E 1982 Phys. Rev. Lett. 49833
[8] Simon B 1985 Ann. Phys. 159157
[9] Gasper G and Rahman M 1990 Basic Hypergeometric Series (New York: Cambridge University Press)
[10] Newton R G 1966 Scattering Theory of Waves and Particles (New York: McGraw-Hill)

[^0]: * Permanent address: Department of Mathematical and Computational Physics, Institute for Finysics, Úniversity of St Petersburg, 198904 St Petersburg, Russia.

